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As important components of air pollutant, volatile organic compounds (VOCs) can cause great
harm to environment and human body. The concentration change of VOCs should be focused on in
real-time environment monitoring system. In order to solve the problem of wavelength redundancy
in full spectrum partial least squares (PLS) modeling for VOCs concentration analysis, a new
method based on improved interval PLS (iPLS) integrated with Monte-Carlo sampling, called
iPLS-MCmethod, was proposed to select optimal characteristic wavelengths of VOCs spectra. This
method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates
random wavelength combinations from the selected wavebands by Monte-Carlo sampling. The
wavelength combination with the best prediction result in regression model is selected as the
characteristic wavelengths of the spectrum. Di®erent wavelength selection methods were built,
respectively, on Fourier transform infrared (FTIR) spectra of ethylene and ethanol gas at di®erent
concentrations obtained in the laboratory. When the interval number of iPLS model is set to 30 and
the Monte-Carlo sampling runs 1000 times, the characteristic wavelengths selected by iPLS-MC
method can reduce from 8916 to 10, which occupies only 0.22% of the full spectrum wavelengths.
While the RMSECV and correlation coe±cient (Rc) for ethylene are 0.2977 and 0.9999ppm, and
those for ethanol gas are 0.2977 ppm and 0.9999. The experimental results show that the iPLS-MC
method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and
e®ectively, and the prediction performance of the regression model can be signi¯cantly improved
and simpli¯ed by using characteristic wavelengths.
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selection; interval partial least square; Monte-Carlo sampling.
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1. Introduction

Volatile organic compounds (VOCs) are de¯ned as
any organic compounds that can produce oxidants
by reactions with nitrogen oxides in sunlight which
would accelerate the photochemical reactions of the
atmosphere.1 The members of VOCs are more than
300 types which all have the common features of
high vapor pressure, low boiling point and strong
reactivity.2 The major species of VOCs along with
their sources and in°uences are listed in Table 1.
We can see from the table that most VOCs can
cause serious damage to human health and the en-
vironment. The main impacts on human bodies are
inhalation of or exposure to the VOCs would induce

various acute and chronic health e®ects such as
central nervous system impairment, cancer, skin
and sensory irritation.3 VOCs also make detrimen-
tal e®ects to the ambient air because they are the
crucial precursors for photochemical ozone that is
the main inducement of global greenhouse e®ect,4

moreover, VOCs play a key role in the formation of
secondary organic aerosols which is the principal
component of PM2.5.5 The sources of VOCs vary
from countries to areas, and they are emitted from
both anthropogenic and natural sources. In the
developed areas, the major sources of VOCs are
automobile exhausts which contribute 25% of the
total VOCs concentration, other sources include

Table 1. Sources and in°uence of typical VOCs.8

Categories Representatives Sources Health impacts Environment in°uence

Alkane Methane9 Part-combusted gas Breathing irritation Greenhouse gas
Butane10 Fuel addictive, Memory loss Marine ecological damage
Hexane Refrigerant solvent Anesthetic Haze

Gasoline consumption

Alcohol Methanol11 Antiseptics petrochemical
derivative

Skin and eyes illness Large amounts of waste
water and gas during
production

Ethanol Cosmetics Pharmaceuticals, Breathing irritation Photochemical smog
Isopropyl alcohol Central nervous system

impairment

Aldehyde Esters Formaldehyde Building and decorative
materials

Throat, eyes and skin illness Predecessor of ozone

Acetaldehyde Cosmetics decomposition Carcinogen Detrimental to vegetation
Tobacco smoking Central nervous system

damage
Chemical production Dizziness

Ole¯ns Ethylene12 Petrochemical derivative Carcinogen Photochemical ozone
Isoprene Product of perfumes and

pharmaceutical
Anesthetic Water and soil pollution

Propylene Adhesives Vertigo

BTEX12 Benzene Petroleum products Carcinogen mutagenic
hazards

Photochemical smog
Damage the ozone layer

Toluene Part-combusted liquid fuels Tiredness Marine ecological damage
Ethylbenzene

xylenes
Adhesives Sleepiness
Production of paints

Cl-VOCs
(chlorinated
VOCs)

Carbon
tetrachloride

Solvent Insecticide Acute toxicity Damage of the ozone layer

Chlorobenzene Dye industry Dizziness Cause greenhouse gas
e®ectsTetrachloroethane Pharmaceutical Nervous and kidney damage

Trichloroethylene Adhesives
Sewage disposal

Ketones Acetone13 Paint Skin in°ammation Oxygen depletion in aquatic
systemCyclohexanone Cleaning agent Corneal damage

Diluent Narcosis
Adhesives Nausea
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industrial emissions, petroleum re¯ning and stor-
age, solvents evaporation, fossil fuels combustion
and biogenic emissions. Natural sources of VOCs
are mainly originated from vegetation and ocean
emissions,6 which occupy a small proportion of the
TVOC (total VOCs) emissions in the city areas.
With the accelerated development of industry and
the rapid expansion of transportation networks,
VOCs have become signi¯cant atmospheric pollu-
tants in urban areas of China.7 As the atmospheric
pollution incidents caused by VOCs become in-
creasingly serious and prominent, it's necessary to
establish a real-time continuous VOCs monitoring
system to con¯rm the information of speci¯c VOCs
and control the emission of them.

Classical VOC analytical methods include
chemical methods, liquid chromatography (LC),14

gas chromatography-mass spectrometry (GC-
MS),15 gas chromatography-°ame ionization detec-
tor (GC-FID),16 photo-ionization detection (PID)17

and so on. With the continuous progress of sensors
and computer technology, various online real-time
VOCs detection technologies and corresponding
portable instruments have been developed. Com-
mercial VOC online monitoring instruments are
mostly based on GS-MS technology, for example,
the Hazardous Air Pollutants on Site (HAPSITE)18

designed by In¯con company is a portable GC-MS
unit which can identify and quantify VOCs from
environmental sampling. Proton transfer reaction-
mass spectrometer (PTR-MS) is also a well-estab-
lished approach for monitoring VOCs in recent
years with its feature of high sensitivity and fast
time response. Joost et al.19 used PTR-MS to detect
the air composition in aged forest-¯re and urban
plumes. Cui et al.20 measured continuous VOCs
information by PTR-MS instrument in urban
roadside of Hong Kong. Chemical ionization reac-
tion mass spectrometry (CIRMS)21 as an extension
of PTR-MS has been applied in real-time atmo-
spheric research, it uses various chemical ionization
reagents in the ionization process which makes it a
more versatile technique than PTR-MS. Koss
et al.22 used NOþ as CIRMS reagent ion to achieve
fast online measurement of trace atmospheric
VOCs.

These online real-time detecting methods are
based on chemical or physical reaction between
gases and reagents. The detection results are accu-
rate, but they have the disadvantages of being time-
consuming, complicated and some require toxic

reagents for preprocessing. Reagent-free and rapid
continuous measurement will be the new trend of
VOC detection.

Due to the progress of modern physics, especially
the development of surface physics, optics and
electronics, infrared spectroscopy has made consid-
erable development during the past decades. As a
nondestructive analysis tool, spectroscopy has been
increasingly applied in ¯elds like environment,
food, pharmaceutical, agriculture and so on with its
advantages of wide range, multi-component analy-
sis and continuous real-time monitoring. The spec-
troscopic methods include nondispersion infrared
(NDIR), di®erential absorption lidar (DIAL), dif-
ferential optical absorption spectroscopy (DOAS),
tunablediode laser absorption spectroscopy (TDLAS)
and Fourier transform infrared (FTIR) spectrosco-
py.23Among thesemethods,FTIR is recommendedby
the US Environment Protect Agency as the speci¯ed
VOC online detection method because of its rapid,
highly sensitive and simultaneous detection of
multiple components.5 FTIR spectrum is generated
from infrared radiation absorption during the vi-
bration transition by polyatomic molecules which
have asymmetric dipole moment, and the spectrum
consists of absorption peaks associated with func-
tional groups (C–H, O–H, N–H, etc.) that can re-
°ect the composition and concentration information
of substances. Since the main components in the air,
nitrogen (78% of dry air), oxygen (21%) and argon
(1%) are transparent to infrared radiation due to
their symmetrical form of molecules, the FTIR
could detect trace VOCs without the interference of
these components.

Spectroscopic method can identify the compo-
nents and their amounts in unknown substances by
building qualitative and quantitative calibration
models of the acquired spectra. In conventional
spectra calibration models, full spectrum modeling
is often used in order to not lose any information
from the spectrum. Full spectrum usually consists of
thousands of variables, which not only contain the
information of target components but also many
other redundant information, such as noise distur-
bance and interference components. While modeling
with redundant variables would a®ect the sensitiv-
ity and predict the accuracy of calibration model.
Meanwhile, the number of variables is usually
much larger than the number of available sample
spectra, which make the analysis of full spectrum
extremely di±cult with the common modeling

Characteristic wavelength selection of volatile organic compounds infrared spectra
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method. Therefore, variable selection method which
selects the most informative variables instead of
using full spectrum is crucial in the spectroscopy
analysis.24 The researches about variable selection,
which is also called characteristic wavelength se-
lection on infrared spectrum, have achieved good
performance in many ¯elds. Miaw et al.25 used iPLS
method to quantify the FTIR spectra of adulterated
fruits syrup. Durand et al.26 adopted genetic algo-
rithm (GA) integrated with PLS modeling for near
infrared (NIR) spectrum quantitative prediction of
cotton content in cotton-viscose textile samples. Li
et al.27 investigated the Monte-Carlo uninformative
variable elimination (MC-UVE) combined with
successive projections algorithm (SPA) to select the
most e®ective variables from NIR spectrum of pears
to determine the soluble solid content and ¯rmness
of the pears. Han et al.28 presented an ensemble of
Monte-Carlo uninformative variable elimination
(EMCUVE) in multivariate calibration of spectra
data. Fan et al.29 used improved Monte-Carlo
sampling, named competitive adaptive reweighted
sampling (CARS), to select the characteristic
wavelengths of vinegar spectrum in order to deter-
mine the total acid of the vinegar. The results of
these researches show that variable selection can
enhance the prediction ability e±ciently and sim-
plify the identify model by using selected variables.
However, there were few researches on characteris-
tic wavelengths selection of VOCs gas spectrum.

The objective of this paper was to ¯nd the opti-
mal characteristic wavelengths of VOCs infrared
spectrum by the variable selection method, as the
selected characteristic wavelengths can make the
calibration model of the spectrum more e®ective
and simpler. In addition, this study aimed at
selecting as few wavelengths as possible to identify
the concentration information of gas spectrum. To
achieve these goals, the speci¯c works are as follows:
(1) presented the acquisition and the pretreatment
method of experimental materials, described the
feature of general VOCs spectrum; (2) introduced
the principle of the proposed wavelengths selection
method and its feasibility in selecting characteristic
wavelengths of VOCs spectrum; (3) compared with
the regression results from full-spectrum modeling
and improved iPLS modeling, the advantages
of proposed iPLS-MC modeling were analyzed from
the perspective of wavelength numbers, Root Mean
Square Error of Cross-Validation (RMSECV),
Root Mean Square Error of Prediction (RMSEP),

Related coe±cient of calibration set (Rc) and Re-
lated coe±cient of prediction set (Rp).

2. Materials and Methods

2.1. Sample preparation

Ethylene (molecular formula C2H4), as a represen-
tative gas of VOCs, is one of the world's most
productive petrochemical derivative, which is
mainly emitted from the engine exhaustion, thermal
power plant and food industry. Excessive inhalation
of ethylene can cause anesthetic disease, ethylene
also causes photochemical smog and increases the
ground-level ozone.30 Ethanol (molecular formula
C2H5OH) gas is one of the typical VOCs as well, it is
the most common monohydric alcohol, and has
been widely used in medical and health service,
chemical industry, food industry and agriculture.31

According to the carcinogens list published by the
World Health Organization, ethanol is a risk factor
for many cancer types including cancer of the
pharynx, liver and breast. As a °ammable gas,
ethanol tends to evaporate into vapor which can
form an explosive mixture with air. Because of the
advantages of easy preparation, low price and low
concentration of the gas doing little harm to human
body, ethylene and ethanol gas are suitable for
laboratory research. Therefore, we choose ethylene
and ethanol gas as the experimental materials for
this study. The gases for experiments are produced
by Hefei Ningte Gas Company and stored in 4 L
sealed air cylinders, respectively. The original con-
centration of ethylene is 2005 ppm (parts per
million, volume concentration) and the original
concentration of ethanol is 2007 ppm. The experi-
mental gases were mixed with the auxiliary gas
nitrogen to get di®erent concentrations. Gas distri-
bution platform adopts the 4-channel high precision
gas distribution system independently developed by
Hefei Institutes of Physical Science, Chinese Acad-
emy of Sciences. The precision of the distribution
system is 0.1% of the original gas concentration,
with error range of 0.5–1‰. In total, we got 60
groups of ethylene gas with concentrations ranging
from 60.15 to 178.445 ppm, with the interval be-
tween each group to be 2.005 ppm, and 60 groups of
ethanol gas with concentrations ranging from 60.21
to 178.623 ppm, with the interval between each
group to be 2.007 ppm. Because of the existence
of distribution system error, the accuracy of the

W. Ju et al.
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concentration is within a range of �5–10% of cal-
culated concentration.

2.2. Spectra acquisition

The infrared spectra were collected by FTIR mul-
ticomponent gas analyzer system independently
developed by Anhui Institute of Optics and Fine
Mechanics, Chinese Academy of Sciences. The an-
alyzer adopts FTIR spectroscopy technology and
gets a multiple re°ection gas cell with the optical
path of 10m inside. The analyzer's measuring
bandwidth covers from 700 to 5000 cm�1 with a
resolution of 1 cm�1 and it scans 16 times to obtain
the average value as the output spectrum. The ex-
periment system was completely airtight and all the
pipes went through vacuum test before starting the
experiment. At the beginning of the experiment, the
gas cylinder was put in the ventilation room, and
the air °ow was kept free. The °ow rate of gas in
each cylinder was controlled by software parameters
of gas distribution platform. The experimental gas
and nitrogen were proportionally con¯gured to the
required concentration. When the gas °ow was kept
steady and the barometric pressure in the gas cell
was close to one bar pressure, we checked the
viewing screen of the analyzer to see whether the
spectrum was stable, then recorded the spectrum
data and its corresponding concentration when it
was stable.

The raw spectra of all 60 groups of C2H4 were
shown in Fig. 1. According to the HITRAN (high-
resolution transmission molecular absorption data-
base), the infrared spectrum of C2H4 has three strong
absorption peaks, located in 2848–2972 cm�1,
1463–1473 cm�1 and 920–980 cm�1, respectively.
The three absorption peaks correspond to C–H
stretching vibration band, –CH2– scissor vibration
band and trans ole¯n vibration band.

The raw spectra of all 60 groups of C2H5OH are
shown in Fig. 2. According to the database from
PNNL (Paci¯c Northwest National Laboratory),
the infrared spectrum of C2H5OH has three
strong absorption peaks located in 3280–3425 cm�1,
2848–2972 cm�1, 1050–1090 cm�1, respectively.
The three absorption peaks correspond to –OH
stretching vibration band, C–H stretching vibration
band and saturated alcohol's C–O stretching
vibration band.

As we can see from Figs. 1 and 2, in addition to
the absorption peaks of target components, there
are many other interference absorption peaks which
are primarily generated by H2O(g) and CO2, as well
as the spectral response of the device. The bending
vibration peak of –OH– in H2O(g) appears in the
range of 1500–1800 cm�1, the stretching vibration
peak appears in the range of 3500–3950 cm�1, and
the antisymmetric stretching vibration peak of
CO2 appears near 2359 cm�1. Therefore, it's vital
to select the characteristic wavelengths of target

Fig. 1. Raw spectra of C2H4.
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components before establish the quantitative and
qualitative calibration models.

2.3. Preparation of spectrum

2.3.1. Lifting wavelet spectrum denoising

In the process of spectrum acquisition, the spectrum
is usually a®ected by the random noises from ac-
quisition equipment or transmission path. The
pretreatment of original spectrum is an essential
procedure before spectrum analysis. In this paper,
lifting wavelet transform (LWT) denoising method
was introduced for pretreatment of the original
spectrum.32 LWT is an improvement of wavelet
algorithm, and it uses multiplication operation in-
stead of convolution operation in traditional wave-
let transform. The lifting scheme is divided into
three stages: split, predict and update to realize its
spatial transformation.

(1) Split: The input signal Si is divided into two
mutually disjoint subsets eveni�1 and oddi�1:

eveni�1 ¼ S½2n�; oddi�1 ¼ S½2n� 1�: ð1Þ
(2) Predict: On the basis of maintaining the

correlation of the original data, the predictor P
was used to treat eveni�1 and the predicted
value P (eveni�1Þ of oddi�1 was obtained. The
actual value of oddi�1 was subtracted from its

predicted value to get the wavelet coe±cient
di�1:

di�1 ¼ oddi�1 � P ðeveni�1Þ: ð2Þ
(3) Update: The purpose of update is to preserve

some global characteristics of the original signal
set in subset Si�1. Construct the update opera-
tor U , update eveni�1 with wavelet coe±cient
di�1, and obtain the low-frequency coe±cient
Si�1:

Si�1 ¼ eveni�1 þ Uðdi�1Þ: ð3Þ
After n times of decomposition of the above three

steps, the original signal expression is fSi�n; di�n;
di�nþ1; . . . ; di�1g, where Si�n represents the low-
frequency part of the signal, fdi�n; di�nþ1; . . . ; di�1g
represents the high-frequency part of the signal.
Lifting wavelet simpli¯es the ¯ltering process into
three basic steps, and each step of decomposition is
reversible. The reconstruction process of the lifting
method is the inverse process of decomposition
process. The decomposition and reconstruction
structure of LWT is shown in Fig. 3.

It can be seen from above description that the
lifting scheme does not need other data except the
output of the previous lifting steps, so that the new
data °ow can replace the old data °ow at each
point, and the lifting wavelet coe±cient can be
obtained by repeating the lifting ¯lter banks. The

Fig. 2. Raw spectra of C2H5OH.

W. Ju et al.
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lifting wavelet not only inherits the multi-resolution
property of classical wavelet but also has simple
structure, low computational complexity and easy
hardware implementation. For online real-time
measurement system, LWT denoising has the ad-
vantage of high running speed, so it is suitable for
VOC online monitoring.

We take the preprocessing of C2H4 spectrum as
an example. Figure 4 is the original spectrum of
C2H4 with the concentration of 60.15 ppm, and
Fig. 5 is the denoised spectrum by 6-layer \db4"
wavelet function lifting scheme denoising.

2.3.2. Comparison of denoising e®ect

When the resolution of the spectrometer is high
enough, the infrared spectrum in an ideal state has a
narrow enough absorption peak in the infrared

absorption waveband, but showing a smooth curve
in the waveband without infrared absorption. In the
measured spectrum, due to the hardware limitation
of spectrometer and the in°uence of noise, the
spectrum in the waveband without infrared ab-
sorption presents a sawtooth shape. According to
this property, the noninfrared absorption waveband
was selected to ¯t the smooth curve. This smooth
curve was taken as the pure infrared spectrum in
the noise-free environment, and the signal-to-noise
ratios (SNRs) of the original spectrum and the
spectrum after lifting wavelet denoising were
calculated.

Figure 6 takes the waveband of 1100–1200 cm�1

as the analysis object, as this band has no infrared
material absorption in this experiment. In the
¯gure, the solid line is the original spectrum, the
dotted line is the spectrum after lifting wavelet

Fig. 4. Original spectrum of C2H4 (60.15 ppm).

Fig. 3. Decomposition and reconstruction of the lifting scheme.
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denoising, and the point solid line is the pure spec-
trum ¯tted. The calculation formula of SNR is
shown in Formula (4), and the calculation results
are listed in Table 2.

SNRðdBÞ ¼ 10 logðP signal=PnoiseÞ: ð4Þ
The original spectra of 60 groups with di®erent

concentrations ranging from 60.15 to 178.445 ppm
were divided into calibration set and validation set

by the Kennard-Stone method with a ratio of 2:1,
the sizes of each set are 40 and 20. Perform the same
divided process to the denoised spectra. The PLS
models were built based on original spectra and
pretreated spectra, respectively, the results are
summarized in Table 2.

From Figs. 4 and 5, we can see clearly that the
pretreatment of spectrum has not only reduced the
noise interference but also made the absorption

Fig. 5. Pretreated spectrum of C2H4 (60.15 ppm).

Fig. 6. Spectrum of C2H4 (60.15 ppm) in the waveband of 1100–1200 cm�1.

W. Ju et al.
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peaks more obvious. It can be seen from Table 2
that the spectral SNR increases from 25.4690 to
35.1569 db after lifting wavelet denoising, that is,
increased by 38.03%. For the two spectra calibra-
tion models, both RMSECV and RMSEP are less
than 3 ppm, and both Rc and Rp are over 0.94,
which indicates that the PLS model has a good
ability to identify the concentration of VOCs. The
calibration result shows that the PLS modeling of
pretreated spectra has a better accuracy and pre-
dictive ability than the modeling of original spectra.

2.4. Primary methods

2.4.1. PLS

PLS is an innovative multivariate statistical anal-
ysis method proposed by Svante Wold in 1983. On
the basis of traditional regression model which di-
rectly uses predictors (independent variables) and
responses (dependent variables), PLS also investi-
gates the multiple correlations among variables by
transfering predictors and responses into a set of
independent factors named latent variables (LVs).
LVs can describe the maximum covariance between
predictors and responses.33,34 In the quantitative
identi¯cation model of VOC spectra, the predictor
is the spectral absorption matrix (X), and the re-
sponse is the gas concentration matrix (Y ). At the
beginning of modeling, the spectra set is divided
into calibration set and prediction set with a certain
ratio. The calibration set is used to establish the
calibration model, and the validation parameters of
calibration set are RMSECV and Rc. RMSECV is
used to calculate the errors on test split using a
cross validation scheme. It can measure the good-
ness of ¯t between known data and the calibration
model. The number of LVs is determined by the
minimum value of RMSECV. The prediction set is
used to verify the predictive ability of the calibra-
tion model, and the validation parameters are
RMSEP and Rp.

2.4.2. Internal partial least squares

Interval partial least squares (iPLS) is an improved
development of PLS. It was proposed by Nørgaard
in 2000 and has become one of the most commonly
used chemometrics method for selecting character-
istic variables in recent years.35 The principle of this
method is to divide the whole spectrum equidistant
into several subintervals, then establish the inde-
pendent PLS model in each subinterval with dif-
ferent numbers of LVs. The optimal number of LVs
in each subinterval is also determined by the mini-
mum RMSECV from cross-validation. By compar-
ing the model of each subintervals and the global
model of full-spectrum, the model with the mini-
mum RMSECV value is selected as the optimal
subinterval. IPLS has advantages of removing the
redundant information and simplifying calculation,
but also has the disadvantage of losing useful
characteristic information because of the single in-
terval modeling.

2.4.3. Monte-Carlo sampling

Monte-Carlo sampling is also called statistical sim-
ulation method, it is a numerical method guided by
the theory of probability statistics. The feature of
Monte-Carlo sampling is that the more the experi-
ments are, the more accurate the results will be.
With the development of modern computer tech-
nology-Monte Carlo sampling is simple and fast in
practical application.36 In the characteristic wave-
length selection of spectrum, Monte-Carlo sampling
uses the di®erent combinations of random wave-
lengths to carry out multiple linear regress (MLR)
modeling, and calculates its regression coe±cient of
each combination. The ¯nal results of characteristic
wavelength selection are determined by the regres-
sion coe±cient. Although the calculation is simple
and fast, Monte-Carlo sampling has the disadvan-
tage that if there are too many variables to be
measured, the calculation amount will be very large.

Table 2. Comparison of original and denoised spectra.

Calibration sets Prediction sets

SNR (dB) Number of LVs Rc RMSECV (ppm) Rp RMSEP (ppm)

Original spectra 25.4690 3 0.9568 2.7685 0.9454 2.9731
Pretreated spectra 35.1569 3 0.9737 2.5827 0.9629 2.7349

Characteristic wavelength selection of volatile organic compounds infrared spectra
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2.4.4. Proposed method

The features of VOCs infrared spectrum include
the following: (1) the spectrum usually contains
several absorption peaks, and the location and in-
tensity of absorption peaks are related to the type
and quantity of gas molecules which contain dif-
ferent functional groups; (2) infrared radiation
absorption changes rapidly with wavelengths, and
the spectrum has maximal values at some certain
wavelengths.37 According to these features, we
propose a new characteristic wavelength selecting
method for VOC gase infrared spectrum called
iPLS-MC algorithm. This method uses the iPLS
method to select subintervals with RMSECV value
less than that of full-spectrum PLS as the charac-
teristic wavebands, then combines these wave-
bands into a new spectrum combination. Monte-
Carlo sampling is used to select random wave-
lengths from the new spectrum combination, then
carry out PLS modeling to calculate the prediction
error of di®erent random wavelength combina-
tions. Monte-Carlo operations are repeated many
times to ensure the stability and reliability of the
results. Finally, the wavelength combination with
the minimum prediction error is selected as the
characteristic wavelength of the spectrum. This
method makes use of the advantages of both iPLS
and Monte-Carlo sampling while avoiding their
disadvantages. iPLS can select several character-
istic spectrum bands with optimal predictive

ability to avoid the possibility of losing useful in-
formation during single modeling. Monte-Carlo
sampling is applied to the new spectrum combi-
nation that has already been screened to avoid
the disadvantage of massive computation, so that
Monte-Carlo sampling can accurately select the
optimal characteristic wavelengths of the VOCs
infrared spectrum.

3. Experiment Results and Discussion

3.1. Model of iPLS

For the iPLS model, the number of intervals has
signi¯cant impact on the performance of the model.
If the interval number is too small, it may degen-
erate into full spectrum PLS model, while if the
interval number is too big, the amount of compu-
tation will be increased. In this study, the full
spectra are divided equally into 20 and 30 intervals,
respectively. Figures 7 and 8 show the iPLS models
of two gas spectra with the intervals of 20, and the
results of two models are listed in Tables 3 and 4. In
each ¯gure, the gray bars represent the RMSECV
value of each subinterval, and the dotted line
expresses the RMSECV value of full spectrum
(global) model. The results that are listed in each
table include the selected interval numbers and
their corresponding wavenumber range, each sub-
interval's optimal LVs number, calibration set's
RMSECV and Rc value, prediction set's RMSEP

Fig. 7. 20 intervals iPLS model of C2H4 spectra.

W. Ju et al.
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and Rp values. Under the same experimental con-
ditions, the number of iPLS intervals was set to 30,
and the experimental results of iPLS for the two gas
spectra are listed in Tables 5 and 6.

The two ¯gures above can provide an overall
view of the relevant information in di®erent spectral
subintervals. It helps us to focus on informative
wavebands and remove other interference regions.

Fig. 8. 20 intervals iPLS model of C2H5OH spectra.

Table 3. Wavebands selected from 20 intervals iPLS model of C2H4 spectra.

Calibration set Prediction set

Interval number Wavenumber range (cm�1) Number of LVs RMSECV (ppm) Rc RMSEP (ppm) Rp

1 700–915 2 0.9074 0.9977 0.9739 0.9951
2 915–1130 3 0.6662 0.9989 0.7043 0.9982
4 1345–1560 4 1.1394 0.9951 1.0484 0.9935
6 1775–1990 3 1.1251 0.9974 1.2010 0.9964
11 2851–3066 5 0.8077 0.9983 0.8205 0.9981
12 3066–3281 3 1.5176 0.9958 1.5176 0.9940
Full spectra 700–4999 3 2.5827 0.9737 2.7349 0.9629

Table 4. Wavebands selected from 20 intervals iPLS model of C2H5OH spectra.

Calibration set Prediction set

Interval number Wavenumber range (cm�1) Number of LVs RMSECV (ppm) Rc RMSEP (ppm) Rp

2 915–1130 2 0.6726 0.9987 0.7043 0.9981
3 1130–1345 4 1.9062 0.9928 2.2734 0.9859
10 2636–2851 3 2.1153 0.9814 2.5671 0.9817
11 2851–3066 3 1.4317 0.9985 1.8502 0.9902
12 3066–3281 4 1.0554 0.9990 1.2167 0.9953
13 3281–3496 3 1.8934 0.9976 1.9631 0.9925
Full spectra 700–4999 3 3.0184 0.9625 3.2361 0.9594

Characteristic wavelength selection of volatile organic compounds infrared spectra
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The predictive ability of each interval varies
greatly, thereby we can easily compare the predic-
tion performance of subinterval models and global
model from the ¯gures.

For the common iPLS model, the subinterval
which has the smallest RMSECV value would be
selected as the characteristic waveband. The VOC
FTIR spectra usually have several absorption
bands, so the operation of iPLS model may lose
some useful parts of the spectra. In this paper, we
select the subintervals in which the RMSECV value
is smaller than the global model RMSECV value as
the characteristic wavebands, and the correspond-
ing subintervals of each iPLS models are listed in
each table. There are six wavebands selected from
the 20 intervals iPLS model of C2H4 spectra, 30% of
the total wavelengths. Also, eight wavebands are
selected from the 30 intervals iPLS model of C2H4

spectra, 27% of the total wavelengths. As for
C2H5OH spectra, there are six and seven wavebands
selected from the 20 and 30 intervals iPLS model,

respectively, 30% and 23% of the total wavelengths.
Compared with the information from the standard
infrared spectra database, the selected subintervals
located in the positions coincide with the absorption
peaks in the database. The results indicate that the
strategy based on iPLS model could be feasible to
select the characteristic regions of the VOC infrared
spectra.

3.2. Model of Monte-Carlo sampling

In Sec. 3.1, iPLS model was performed for acquir-
ing characteristic wavebands of VOCs spectra, and
the selected wavebands were prepared for the next
operation of Monte-Carlo sampling. A certain
number of wavelengths were selected randomly
from the selected wavebands by Monte-Carlo
sampling and the PLS model was established based
on these selected wavelengths. We repeated the
Monte-Carlo sampling and PLS modeling many
times to ensure the stability and reliability of the

Table 5. Wavebands selected from 30 intervals iPLS model of C2H4 spectra.

Calibration set Prediction set

Interval number Wavenumber range (cm�1) Number of LVs RMSECV (ppm) Rc RMSEP (ppm) Rp

2 843–987 3 0.6294 0.9990 0.6458 0.9989
3 987–1131 2 0.8144 0.9983 0.8216 0.9983
5 1275–1418 10 1.2473 0.9951 1.2487 0.9960
6 1418–1562 4 1.5858 0.9913 2.1040 0.9892
9 1848–1992 4 1.1492 0.9969 1.2135 0.9964
16 2851–2994 2 0.9305 0.9974 1.0895 0.9969
17 2994–3138 2 2.4827 0.9821 2.5700 0.9804
18 3138–3281 5 2.4636 0.9836 2.5808 0.9813
Full spectra 700–4999 3 2.5827 0.9737 2.7349 0.9629

Table 6. Wavebands selected from 30 intervals iPLS model of C2H5OH spectra.

Calibration set Prediction set

Interval number Wavenumber range (cm�1) Number of LVs RMSECV (ppm) Rc RMSEP (ppm) Rp

2 843–987 3 2.0877 0.9895 2.3583 0.9816
3 987–1131 3 0.5219 0.9996 0.7126 0.9983
15 2708–2851 3 2.0447 0.9901 2.6912 0.9878
16 2851–2994 3 1.1211 0.9974 1.0895 0.9969
17 2994–3138 4 1.0516 0.9978 1.5065 0.9904
18 3138–3281 3 1.9206 0.9927 2.4185 0.9813
19 3281–3424 4 1.7698 0.9921 1.9219 0.9878
Full spectra 700–4999 3 3.0184 0.9625 3.2361 0.9594

W. Ju et al.
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results. The prediction error was calculated sepa-
rately corresponding to wavelengths set in each
operation. Finally, the wavelengths set with the
minimum prediction error were adopted as the
optimal characteristic wavelength combinations of
the spectrum.

The wavebands selected from 20 intervals iPLS
model of C2H4 spectrum have totally 1290 wave-
lengths. In this study, we selected 20 wavelengths

from the preselected wavebands by Monte-Carlo
sampling, the sampling process was repeated 1000
times to get the minimum RMSECV. Through
several experiments, the results of RMSECV were
stable at about 0.3 ppm. The results of iPLS-MC
model are shown in Fig. 9, with the characteristic
wavelengths denoted by red asterisk. The 20
wavelengths selected from 30 intervals iPLS model
of C2H4 spectra are shown in Fig. 10.

Fig. 9. Wavelengths selected by iPLS (20 intervals)-MC model of C2H4 spectra.

Fig. 10. Wavelengths selected by iPLS (30 intervals)-MC model of C2H4 spectra.

Characteristic wavelength selection of volatile organic compounds infrared spectra
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For C2H5OH spectra, we selected 10 wavelengths
each time by Monte-Carlo sampling and repeated
1000 times for the ¯nally result. The 10 wavelengths
selected from 20 intervals and 30 intervals iPLS
model of C2H5OH spectra are shown in Figs. 11
and 12, respectively. The speci¯c wavelengths
positions of each ¯gure are listed in Table 7.

The results listed in Table 7 indicate that the
Monte-Carlo sampling can select the characteristic

wavelengths from gas spectra e±ciently, and the
values of RMSECV and Rc are much smaller than
the corresponding values of full spectra PLS model.
In the experiment of C2H4 spectra modeling, we set
the number of the characteristic wavelengths to 20
which is about 1.6% of the number of iPLS wave-
bands combination. The ¯nal results indicate that
the proposed method gets excellent prediction
e®ects. On the basis of the experiment of C2H4, we

Fig. 11. Wavelengths selected by iPLS (20 intervals)-MC model of C2H5OH spectra.

Fig. 12. Wavelengths selected by iPLS (30 intervals)-MC model of C2H5OH spectra.

W. Ju et al.
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try to reduce the number of characteristic wave-
lengths number to 10 which only accounts for 0.7%
of the C2H5OH spectrum wavebands selected by
iPLS model, and the iPLS-MC modeling of C2H5OH
get better prediction results than the experiment of
C2H4 spectra. The reason is that in combinatorial
mathematics, when the total sample points are de-
termined, the smaller the number of points to be
sampled is, the greater the probability of all possible
sample combinations to be obtained will be. The
VOC infrared spectrum usually contains several
absorption peaks which can explain the feature of
the certain gas, so the number of characteristic
wavelengths can reduce to a small number corre-
sponding to the number of absorption peaks.

Comparing di®erent models on two VOC spectra, it
is obvious that the iPLS-MC model can select the
informative wavelengths e®ectively and accurately.
The accuracy of prediction has been greatly
improved.

3.3. Comparison of selected wavelengths

by a di®erent method

The performance of each model was evaluated by
the prediction set randomly selected from the ac-
quired spectral samples. Both prediction sets of two
gases contain 24 samples with di®erent concentra-
tions. The scatter plots in Figs. 13 and 14 intuitively
show the correlation between predicted and actual

Table 7. Results of iPLS-MC model.

Spectrum type Ipls interval Wavelength number Wavelength position (cm�1) RMSECV (ppm) Rc

C2H4 20 20 839, 907, 987, 1025, 1035, 1087, 1111,
14601, 546, 1823, 1905, 1907, 1951, 2891,

2942, 2963, 3002, 3057, 3077, 3273

0.3001 0.9999

30 20 947, 953, 961, 1016, 1285, 1293, 1343, 1435,
1453, 1461, 1882, 1907, 2881, 2899, 2997,

3110, 3196, 3231, 3238, 3256

0.3364 0.9998

C2H5OH 20 10 1015, 1049, 2771, 2896, 2981, 3023, 3064,
3161, 3290, 3450

0.2977 0.9999

30 10 1085, 2899, 2942, 2973, 3014, 3079, 3098,
3161, 3257, 3308

0.3109 0.9999

(a) (b)

Fig. 13. Relationship between the predicted and actual concentration of C2H4 (a) iPLS intervals of 20 and (b) iPLS intervals of 30.

Characteristic wavelength selection of volatile organic compounds infrared spectra
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concentrations from di®erent modeling methods. In
each ¯gure, the star points represent the identi¯-
cation result of full spectrum PLS model, and the
circle points and triangle points represent the
results of iPLS model and iPLS-MC model, respec-
tively. As we can see from the ¯gures, the prediction
errors of iPLS model and iPLS-MC model evidently
decreased compared with the result of full spectrum
PLS model. Especially in the iPLS-MC model, the
predicted and actual concentrations are highly
correlated.

Table 8 summarized the parameters and experi-
ment results of three models performed on the
quantitative analysis of VOC spectra. Compared
with the preliminary number of full spectrum
(700–4999 cm�1, 4300 wavelengths), the character-
istic wavebands selected from the iPLS model were

215 (20 intervals) and 143 (30 intervals), accounting
for 5% and 3.3% of the preliminary number. Mean-
while, the RMSECV and RMSEP values reduced
from 3 to about 0.6 ppm, and the Rc and Rp values
increased from 0.96 to 0.998. The characteristic
wavelengths selected from iPLS-MCmodel are 20 and
10, accounting for 0.4% and 0.2% of the preliminary
number, and the RMSECV and RMSEP values re-
duced dramatically to 0.3 ppm, simultaneously the
Rc and Rp values increased to 0.9999. All the para-
meters indicated the stability of the model which can
get a satisfactory prediction performance in selecting
characteristic wavelengths of VOC spectrum.

The prediction results of the quantitative iden-
ti¯cation models were signi¯cantly improved when
employing characteristic wavelength selection, and
the models were also simpli¯ed by using only a small

(a) (b)

Fig. 14. Relationship between the predicted and actual concentration of C2H5OH (a) iPLS intervals of 20 and (b) iPLS intervals
of 30.

Table 8. Results of each model for two gas spectra.

Type
C2H4 C2H5OH

parameters number RMSECV Rc RMSEP Rp number RMSECV Rc RMSEP Rp

PLS 4300 2.5827 0.9737 2.7349 0.9629 4300 3.0184 0.9625 3.2361 0.9594

iPLS 215 0.6662 0.9989 0.7043 0.9982 215 0.6726 0.9987 0.7043 0.9981
143 0.6294 0.9990 0.6458 0.9989 143 0.5219 0.9996 0.7126 0.9983

iPLS-MC 20 0.3001 0.9999 0.3118 0.9999 10 0.2977 0.9999 0.3201 0.9999
20 0.2846 0.9998 0.3007 0.9999 10 0.2904 0.9999 0.3193 0.9999
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part of informative wavelengths. The results ex-
perimentally proved the necessity to perform char-
acteristic wavelength selection before building a
calibration model.

4. Conclusion

In this work, an improved characteristic wavelength
selection method called iPLS-MC model was pro-
posed to identify the concentration information of
VOCs from its FTIR spectrum. As the spectra of
di®erent gases vary greatly, it's necessary to select
the characteristic wavebands or wavelengths of gas
spectrum before establishing the calibration models.
First, we systematically collected the FTIR spectra
of ethylene and ethanol in laboratory, then used the
obtained spectra to build full-spectrum PLS model,
iPLS model and iPLS-MC model, respectively. At
last, we compared the experiment results of each
model and got the following conclusions: (1) FTIR
as a noncontact spectral technology integrated with
PLS modeling can e®ectively detect the concentra-
tion information of VOCs. (2) Both iPLS method
and iPLS-MC method can select the characteristic
wavebands or wavelengths corresponding to the gas
spectral absorption peak regions, and the prediction
e®ects of models which used the selected wavebands
or wavelengths were better than that of full-spec-
trum modeling. (3) iPLS-MC method improves the
single selection of iPLS, it combines multiple
wavebands screened by iPLS modeling and selects
wavelengths from those wavebands by Monte-Carlo
sampling to get the optimal wavelength combina-
tion. The performance of the regression model built
by characteristic wavelengths from iPLS-MC model
was superior in contrast with that by the iPLS
model. In the iPLS-MC model, less than 0.4% of the
total spectral wavelengths had been selected, the
correlation coe±cient of prediction set (Rp) by the
selected wavelengths reached 0.9999. The results
demonstrate that iPLS-MC method is a useful
wavelength reduction tool for VOC spectra to
retain useful information.

In this paper, for the ¯rst time, we put forward
the variable selection method to optimize the VOC
FTIR spectrum, meanwhile, we proposed a new
characteristic wavelength selection method named
iPLS-MC which achieved high accuracy prediction
performance in laboratory conditions. The proposed
characteristic wavelength selection method provides
a new thought to make the online atmospheric

environment pollution monitoring and other spec-
troscopic analysis simpler and more e®ective. It is
noteworthy that the experiment was carried out
with VOC gas as the carrier because VOC gas de-
tection is a key issue in the prevention and control
of atmospheric environmental pollution at present.
This method is applicable not only to VOC gas but
also to any other asymmetric polyatomic gas with
infrared spectrum absorption, such as CO2, SO2,
SO3, etc. In order to improve the applicability of the
model, di®erent kinds of asymmetric polyatomic
gases should be tested in this model.

Moreover, when the gas mixtures with character-
istic wavebands overlapped in the same spectral re-
gion, the results should be discussed in three cases:
(1) The concentration of one gas is known, while the
concentrations of other mixed gases change little, this
method can accurately select the characteristic
wavelengths of the gas with the known concentration.
As shown in Fig. 1, one absorption peak of C2H4

overlaps with water vapor's absorption peak in the
waveband near 1500 cm�1, the proposed method can
select the characteristic wavelengths of C2H4 accu-
rately. (2) The concentration of one gas is known, the
concentrations of other mixed gases change in the
same proportion to the known gas, this method can
select the characteristicwavelengths in the overlapped
region, but the determination of gas type requires as-
sistance of other selected absorption peaks. (3) The
concentration of the mixed gases varies in di®erent
proportions, the linear superposition of absorption
peaks in the same wavelengths results in mismatches
with concentration information, errors or failure of
¯tting may occur when spectral PLS is calibrated
quantitatively. The new method cannot work in this
situation because it based on PLS model.

The number of the wavelengths that participated
in the Monte-Carlo sampling is not determined in
this study, how to choose the optimal number of
characteristic wavelengths should be studied in the
future research.
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